Regularity Results for a Class of Obstacle Problems under Non Standard Growth Conditions

نویسندگان

  • MICHELA ELEUTERI
  • JENS HABERMANN
چکیده

We prove regularity results for minimizers of functionals F(u, Ω) := Ω f(x, u, Du) dx in the class K := {u ∈ W 1,p(x)(Ω,R) : u ≥ ψ}, where ψ : Ω → R is a fixed function and f is quasiconvex and fulfills a growth condition of the type L−1|z|p(x) ≤ f(x, ξ, z) ≤ L(1 + |z|p(x)), with growth exponent p : Ω → (1,∞).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity results for a class of obstacle problems

We prove some optimal regularity results for minimizers of the integral functional ∫ f(x, u,Du)dx belonging to the class K := {u ∈ W (Ω) : u ≥ ψ}, where ψ is a fixed function, under standard growth conditions of p-type, i.e. L−1|z|p ≤ f(x, s, z) ≤ L(1 + |z|).

متن کامل

A Hölder continuity result for a class of obstacle problems under non stan - dard growth conditions

A Hölder continuity result for a class of obstacle problems under non standard growth conditions Michela Eleuteri and Jens Habermann Michela Eleuteri, Dipartimento di Matematica di Trento via Sommarive 14, 38100 Povo (Trento) Italy; e-mail: [email protected] Jens Habermann, Department of mathematics, Friedrich-Alexander University, Bismarckstr. 1 1/2, 91054 Erlangen, Germany; e-mail: ha...

متن کامل

Regularity of Solutions of Obstacle Problems for Elliptic Equations with Oblique Boundary Conditions

Much has been written about various obstacle problems in the context of variational inequalities. In particular, if the obstacle is smooth enough and if the coefficients of associated elliptic operator satisfy appropriate conditions, then the solution of the obstacle problem has continuous first derivatives. For a general class of obstacle problems, we show here that this regularity is attained...

متن کامل

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008